

BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities and Commerce, Sainikpuri Autonomous College | Affiliated to Osmania University Reaccredited with 'A' Grade by NAAC

Syllabus - B Sc I Year Physics W.e.f the academic year: 2025-26

Semester I

Course Name: Mechanics Course Code: PH123 (60 Hours)

Course Objectives: This course is designed to

COB1: illustrate applications of vector differentiation, integration

COB2: describe motion associated with variable mass systems and rigid bodies.

COB3: interpret the laws of planetary motion

COB4: infer the concept of relativity

Unit - I

HPW: 4

(15 hrs)

CREDITS: 4

Vector Analysis (8)

Scalar and vector fields, gradient of a scalar field and its physical significance. Divergence and Curl of a vector field and related problems.

Vector Integration (7)

Vector integration- line, surface and volume integrals. Stoke's, Gauss, and Green's theorems – simple applications.

Unit - II

(15 hrs)

Motion of variable mass system (7)

Laws of Motion-Motion of variable mass system, motion of a rocket, multi-stage rocket, conservation of energy and momentum.

Mechanics of rigid bodies (8)

Definition of Rigid body. Rotational kinematic relations, equation of motion for a rotating body, angular momentum and Inertia tensor. Euler's equations, torque free motion of a symmetric top. Symmetric top and processional motion, Gyroscope.

Unit - III

(15 hrs)

Central forces (7)

Central forces – definition and examples, conservative nature of central forces, force as a negative gradient of potential energy, center of mass of many body systems, two body problem, equation of motion under a central force.

Gravitational forces (8)

Gravitation potential and gravitational field, Kepler's Laws-Derivation, Colliding gravitational waves and Chandrasekhar's limit.

CHAIRPERSON BOS in Physics

Bhavan's Vivekananda College

1

Unit - IV (15 hrs)

Frames of reference and transformation (8)

Frames of reference- inertial and non-inertial, Galilean transformation equations, Galilean Invariance, absolute frame of reference, Michelson – Morley experiment- significance of negative result.

Consequences of relativistic transformations (7)

Postulates of special theory of relativity, Lorentz transformation, time dilation, length contraction, addition of velocities, mass – energy relation. Concept of four vector formalism and their transformations.

Note: Problems should be solved at the end of every chapter of all the units.

Course Outcomes: By the end of this course, the student will be able to

CO1: apply the concepts of vector differentiation, integration in solving numericals

CO2: analyze the motion of a rocket as a variable mass system and distinguish the various types of rigid body motion.

CO3: outlines the concepts of central forces and explains its conservative nature.

CO4: formulate a four vector in space and time by the modification of classical transformations.

Text books:

- 1. First year Physics, Telugu Akademi.
- 2. Mechanics, D S Mathur, S Chand and company Limited.
- 3. Mechanics of Particles, Waves and Oscillations. Anwar Kamal, New Age International.
- 4. Mechanics of Particles, Waves and Oscillations. Dr S L Gupta and Sanjeev Gupta, *Jai Prakash Nath Publications*.
- 5. Mechanics, H S HANS and S P PURI, Tata-McGraw Hill Company Edition, 2008.
- 6. College Physics, I. T. Bhimasankaram and G. Prasad, Himalaya Publishing House.

Reference Books:

- 1. Fundamentals of Physics, Halliday, Resnick and Walker, Wiley India Edition 2007.
- 2. Berkeley Physics Course Vol.1, Mechanics C. Kittel, M.A. Ruderman, *Tata McGraw Hill Company Edition 2008*.
- 3. University Physics, Young and Freeman, Pearson Education 2005.
- 4. Sears and Zemansky's University Physics, Hugh D. Young, Roger A., Freedman Pearson Education Eleventh Edition.
- An Introduction to Mechanics, Daniel Kleppner & Robert Kolenkow, The McGraw Hill Companies.
- 6. Engineering Physics, R.K. Gaur & S.L. Gupta, *Dhanpat Rai Publications*.

CHAIRPERSON BOS in Physics

Bhavan's Vivekananda College Sainikpuri

Semester I Course Name: Mechanics Practicals Course Code: PH123P HPW: 2 CREDITS: 1

Course Objectives: This course is designed to

COB1: determine moment of inertia and elastic constants.

COB2: study flow of liquids through capillaries and understand capillary rise

Experiments:

- 1. Determination of Moment of Inertia of rectangular lamina and verification of perpendicular axes theorem using Bifilar suspension.
- 2. Calculate Young's modulus and rigidity modulus using oscillations of a mass under different combinations of springs.
- 3. Determination of Young's modulus by uniform Bending (or) Non- uniform Bending.
- 4. Moment of inertia of a flywheel.
- 5. Measurement of rigidity modulus using Torsional Pendulum.
- 6. Determination of Surface Tension of a liquid using capillary rise method.
- 7. Study of flow of liquids through capillaries-measurement of coefficient of viscosity.
- 8. Determination of g and k from the study of oscillations of compound pendulum.

Course Outcomes: by the end of this course, the student will be able to

CO1: acquire skill to determine moment of inertia and elastic constants.

CO2: adapt the methods of measurement of surface tension and coefficient of viscosity.

Recommended Books:

- 1. B. Sc Practical Physics, C L Arora, S. CHAND & Company Ltd.
- 2. B. Sc Practical Physics, Harnam Singh Dr P S Hemne S. CHAND & Company Ltd.
 Advanced Practical Physics for Students, B L Flint and H T Worsnop, Methuen & co. Ltd.
 -London, S6 Essex Street, Strand, W G. 2
- 3. Theory Machines, R S KHURMI and J K GUPTA, S. CHAND & Company Ltd.
- 4. Introduction to Physics for Scientists and Engineers, F.J Ruche, McGraw Hill.
- 5. A Text Book of Practical Physics, Indu Prakash & Ramakrishna, Kitab Mahal, New Delhi.
- 6. Measurement, Instrumentation and Experiment Design in Physics and Engineering, Michael Sayer, Abhai Mansingh, *PHI publishers*.

CHAIRPERSON
BOS in Physics
Bhavan's Vivekananda Gellege
Sainikpuri

BHAVAN'S VIVEKANANDA COLLEGE

of Science, Humanities and Commerce, Sainikpuri Autonomous College | Affiliated to Osmania University Reaccredited with 'A' Grade by NAAC

> Syllabus - B Sc I Year Physics Wef the academic year: 2025-26

Semester II

Course Name: Thermal Physics Course

Course Code: PH 223 (60 Hours)

HPW: 4

CREDITS: 4

Course Objectives: This course is designed to

COB1: define the Laws of Thermodynamics

COB2: relate Laws of Thermodynamics in various applications

COB3: discuss various laws of Black body radiations and its applications

COB4: explain the concept of kinetic theory of gases to classical and Quantum Statistics

Unit-I

Thermodynamics (7)

(15 hrs)

Basics of thermodynamics- Isothermal and Adiabatic processes – Work done and relation between the specific heats. Reversible and Irreversible processes. Carnot's Engine and its efficiency.

Second Law of Thermodynamics(8)

Kelvin's and Claussius statements, Thermodynamic scale of temperature. Entropy: physical significance. Change in entropy in reversible and irreversible processes, Entropy and disorder, Entropy of Universe, Temperature-Entropy (T-S) diagram. Change of entropy of a perfect gas and change of entropy when ice changes into steam.

Unit-II (15 hrs)

Thermodynamic potentials and Maxwell's equations (8)

Thermodynamic Potentials: Definitions, properties and applications. First and Second order Phase Transitions. Derivation of Maxwell's thermodynamic Relations and applications (1) Clausius-Clapeyron's equation, (2) Value of Cp-Cv, (3) TdS Equations. Joule Kelvin effect: Expression for Joule Kelvin coefficient for perfect and Vander wall's gas.

Low temperature Physics (7)

Methods of Production of low temperatures-Joule Thomson's porous plug Experiment. Distinction between Joule's, Adiabatic and Joule Thomson's Expansion processes. Liquefaction of gases: liquefaction of hydrogen and Helium-Adiabatic Demagnetization. Principle of Refrigeration, Vapor Compression Machine.

Unit-III (15 hrs)

Radiation Laws (9)

Black body: Ferry's black body, distribution of energy in the spectrum of Black body. Stefan's law, Wien's displacement law (qualitative), Wien's law and Rayleigh-Jeans law. Quantum theory of Radiation: Planck's law, deduction of Wien's law, Rayleigh-Jeans law and Stefan's law from Planck's law.

Mal

CHAIRPERSON BOS in Physics Measurement of Radiation: (6)

Pyrometers: Types of pyrometers. Disappearing filament optical pyrometer. Angstrom Pyroheliometer and determination of solar constant. Estimation of temperature of the Sun.

Unit-IV (15 hrs)

Kinetic theory of gases (7)

Elements of Kinetic theory of gases: Mean free path and degrees of freedom. Law of Equipartition of energy and its application to specific heat of mono and diatomic gases. Equation of State: Ideal and Vander wall's gases. Distribution of velocities: Derivation of Maxwell's law of distribution of speeds in ideal gas and its experimental verification. Thermal Ionization Equation of Meghnad Saha- Basic statement. Speed distribution curves. Transport phenomena: Viscosity, Thermal conduction and diffusion.

Statistical Mechanics (8)

Introduction to Statistical Mechanics: Concept of ensembles and phase space. Distribution and Statistical equilibrium. Concept of probability: Distribution function and probability theorems. Maxwell Boltzmann's distribution law: Molecular energies in ideal gas. Quantum statistics: Bose Einstein's Distribution law and Fermi Dirac distribution law. Bose condensate Theory-Statement only. Comparison of three statistics.

Course Outcomes: By the end of this course, the student will be able to

CO1: recognize the importance of the Laws of Thermodynamics

CO2: demonstrate the use of Maxwell's relations in various applications

CO3: interpret the various laws of radiation and estimate the Temperature of Sun and Solar Constant

CO4: formulate Quantum statistics by using kinetic theory of gases and obtain molecular energies

Textbooks:

- 1. Second Year Physics, Telugu Akademi.
- 2. Heat and thermodynamics, Brijlal and Subrahmanyam S. Chand & Company Ltd.
- 3. Heat and thermodynamics, D.S. Mathur, S. Chand & Company Ltd.
- 4. Heat and thermodynamics, Mark W Zemansky, The McGraw-Hill companies.
- 5. Thermodynamics, R.C. Srivastava, Subit K. Saha & Abhay K. Jain Eastern Economy Edition.
- 6. Fundamentals of Physics, Halliday/Resnick/Walker.C. Wiley India Edition 2007.

Reference Books:

- 1. Statistical Physics, F. Reif. The McGraw-Hill Companies.
- 2. University Physics, Young and Freeman, Pearson Edition, Edition 2005.
- 3. Engineering Physics, Uma Mukherji, Narosa Publishing house.
- 4. Feynman's Lectures on PhysicsVol. 1,2,3 & 4. Narosa Publications.
- 5. Modern Engineering Physics, A.S. Vasudeva. S. Chand & Co. Publications.

CHAIRPERSON
BOS in Physics
Bhavan's Vivekananda College
Sainikpuri

Semester II

Course name: Thermal Physics Practicals

Course Code: PH 323P

CREDITS: 1

Course Objectives: This course is designed to

COB1: enhance ability to determine thermal conductivity, specific heat heating efficiency.

COB2: analyze discrepancy in practical and experimental observations and results in comparison to theory

- 1. Measurement of Stefan's constant.
- 2. Specific heat of a liquid by applying Newton's law of cooling correction.
- 3. Coefficient of thermal conductivity of a bad conductor by Lee's method.
- 4. Heating efficiency of electrical kettle with varying voltages.
- 5. Thermistor characteristics-Resistance thermometry.
- 6. To study the variation of thermo emf across two junctions of a thermocouple with temperature.
- 7. Measurement of Curie temperature by study of variation in resistance/capacitance/magnetic phase change with temperature.
- 8. Specific heat capacity of solids.
- 9. Cooling curve of a metallic body.

Course Outcomes: By the end of this course, the student will be able to

CO1: acquire skill to determine thermal conductivity, specific heat heating efficiency. CO2: adapt the comparative studies and understand discrepancy in practical and

experimental observations

Recommended Books:

- 1. A laboratory manual for undergraduate classes, D.P. Khandelwal, *Vani Publishing House, New Delhi*.
- 2. B.Sc Practical Physics, C L Arora, S. Chand & Company Ltd.
- 3. B.Sc Practical Physics, Harnam Singh Dr P S Hemne, S. Chand & Company Ltd.

CHAIRPERSON BOS in Physics Bhavan's Vivekananda College Sainikpuri